Estou tentando calcular a média móvel de um sinal. O valor do sinal (um duplo) é atualizado em horários aleatórios. Estou procurando uma maneira eficiente de calcular sua média ponderada no tempo ao longo de uma janela de tempo, em tempo real. Eu poderia fazê-lo sozinho, mas é mais desafiante do que eu pensava. A maioria dos recursos que encontrei através da internet calculam a média móvel do sinal periódico, mas as atualizações das minas em tempo aleatório. Alguém conhece bons recursos para isso. O truque é o seguinte: você obtém atualizações em horários aleatórios através de atualização vazia (tempo int, valor flutuante). No entanto, você também precisa acompanhar quando uma atualização cai na janela de tempo, de modo que você configure um alarme chamado no momento N, que remove a atualização anterior de ser novamente considerado novamente na computação. Se isso acontecer em tempo real, você pode solicitar o sistema operacional para fazer uma chamada para um método void dropoffoldestupdate (int time) para ser chamado no tempo N Se esta é uma simulação, você não pode obter ajuda do sistema operacional e você precisa Faça-o manualmente. Em uma simulação, você chamaria métodos com o tempo fornecido como um argumento (que não se correlaciona com o tempo real). No entanto, uma suposição razoável é que as chamadas são garantidas de tal forma que os argumentos de tempo estão aumentando. Neste caso, você precisa manter uma lista ordenada de valores de hora do alarme e, para cada atualização e leitura, você verifica se o argumento de tempo é maior que o cabeçalho da lista de alarmes. Embora seja maior, você faz o processamento relacionado ao alarme (abandone a atualização mais antiga), remova a cabeça e verifique novamente até que todos os alarmes anteriores ao tempo fornecido sejam processados. Em seguida, faça a chamada de atualização. Tenho até agora assumido que é óbvio o que você faria para a computação real, mas vou elaborar apenas no caso. Eu suponho que você tenha um método flutuante lido (int time) que você usa para ler os valores. O objetivo é tornar este chamado tão eficiente quanto possível. Então você não calcula a média móvel sempre que o método de leitura é chamado. Em vez disso, você precomputa o valor a partir da última atualização ou o último alarme, e ajuste esse valor por algumas operações de ponto flutuante para explicar a passagem do tempo desde a última atualização. (I. E. Um número constante de operações, exceto para talvez processar uma lista de alarmes empilhados). Esperemos que isso seja claro - este deve ser um algoritmo bastante simples e bastante eficiente. Otimização adicional. Um dos problemas restantes é se um grande número de atualizações acontecerem dentro da janela de tempo, então há muito tempo para o qual não há leituras nem atualizações e, em seguida, uma leitura ou atualização vem junto. Nesse caso, o algoritmo acima será ineficiente ao atualizar de forma incremental o valor de cada uma das atualizações que está caindo. Isso não é necessário, porque nós só nos preocupamos com a última atualização além da janela de tempo, então, se houver uma maneira de descartar todas as atualizações mais antigas, isso ajudaria. Para fazer isso, podemos modificar o algoritmo para fazer uma pesquisa binária de atualizações para encontrar a atualização mais recente antes da janela de tempo. Se houver relativamente poucas atualizações que precisam ser descartadas, pode-se incrementar o valor para cada atualização descartada. Mas se houver muitas atualizações que precisam ser descartadas, pode-se recalcular o valor a partir do zero depois de deixar as atualizações antigas. Apêndice em Computação Incremental: Devo esclarecer o que quero dizer pela computação incremental acima na frase ajustar esse valor por um par de operações de ponto flutuante para explicar a passagem do tempo desde a última atualização. Computação inicial não incremental: então iterar sobre os atuais relevantes em ordem crescente de tempo: tempo de exibição de motionaverage (sum tempo de atraso). Agora, se exatamente uma atualização cai fora da janela, mas nenhuma nova atualização chegou, ajuste a soma como: (note que é priorupdate, que tem seu timestamp modificado para iniciar o início da última janela). E se exatamente uma atualização entrar na janela, mas nenhuma nova atualização cai, ajuste a soma como: Como deve ser óbvio, este é um esboço áspero, mas espero que mostre como você pode manter a média de que é O (1) operações por atualização Em uma base amortizada. Mas observe uma otimização adicional no parágrafo anterior. Observe também as questões de estabilidade aludidas em uma resposta mais antiga, o que significa que os erros de ponto flutuante podem se acumulam em um grande número dessas operações incrementais, de modo que existe uma divergência com o resultado da computação total que é significativa para o aplicativo. Se uma aproximação é OK e há um tempo mínimo entre amostras, você pode tentar super-amostragem. Tenha uma matriz que represente intervalos de tempo uniformemente espaçados que sejam menores do que o mínimo, e em cada período de tempo armazene a última amostra que foi recebida. Quanto menor o intervalo, mais próxima será a média para o valor verdadeiro. O período não deve ser superior a metade do mínimo ou há uma chance de perder uma amostra. Respondeu 15 de dezembro às 18:12 respondido 15 de dezembro às 22:38 Obrigado pela resposta. Uma melhoria que seria necessária para que o quotcachequot fosse o valor da média total, de modo que não estivemos todos os dias. Além disso, pode ser um ponto menor, mas não seria mais eficiente usar um deque ou uma lista para armazenar o valor, já que assumimos que a atualização virá na ordem correta. A inserção seria mais rápida do que no mapa. Ndash Arthur 16 de dezembro 11 às 8:55 Sim, você pode armazenar em cache o valor da soma. Submeta os valores das amostras que você apaga, adicione os valores das amostras que você inseriu. Além disso, sim, um dequeltpairltSample, Dategtgt pode ser mais eficiente. Eu escolhi o mapa para a legibilidade e a facilidade de invocar o mapa :: upperbound. Como sempre, escreva o código correto primeiro, depois faça o perfil e mude as mudanças incrementais. Ndash Rob Dec 16 11 at 15:00 Nota: Aparentemente, esta não é a maneira de abordar isso. Deixando-o aqui para referência sobre o que está errado com essa abordagem. Verifique os comentários. ATUALIZADO - com base no comentário Olis. Não tenho certeza sobre a instabilidade de que ele está falando. Use um mapa ordenado de tempos de chegada contra valores. Após a chegada de um valor, adicione a hora de chegada ao mapa ordenado juntamente com seu valor e atualize a média móvel. Advertindo isso é pseudo-código: aí. Não totalmente elaborado, mas você consegue a ideia. Coisas a serem observadas. Como eu disse, o acima é pseudo-código. Você precisará escolher um mapa apropriado. Não remova os pares conforme você itera, pois você invalidará o iterador e terá que começar de novo. Veja o comentário Olis abaixo também. Respondeu 15 de dezembro às 12:22 Isso não funciona: ele não leva em consideração a proporção do comprimento de janela de cada valor para. Além disso, essa abordagem de adicionar e depois subtrair é apenas estável para tipos inteiros, não flutuadores. Ndash Oliver Charlesworth 15 de dezembro às 12:29 OliCharlesworth - desculpe, perdi alguns pontos-chave na descrição (dupla e ponderada no tempo). Vou atualizar. Obrigado. Ndash Dennis 15 de dezembro 11 às 12:33 A ponderação do tempo é mais um problema. Mas isso não é o que eu estou falando. Eu estava me referindo ao fato de que quando um novo valor primeiro entra na janela de tempo, sua contribuição para a média é mínima. Sua contribuição continua a aumentar até um novo valor entrar. Ndash Oliver Charlesworth 15 de dezembro 11 às 12: 35Eu sei que isso é realizável com o aumento de acordo com: Mas eu realmente gostaria de evitar o uso de impulso. Eu mencionei e não encontrei nenhum exemplo adequado ou legível. Basicamente eu quero acompanhar a média móvel de um fluxo contínuo de um fluxo de números de ponto flutuante usando os 1000 números mais recentes como amostra de dados. Qual é a maneira mais fácil de alcançar isso, experimentei usar uma matriz circular, uma média móvel exponencial e uma média móvel mais simples e descobriu que os resultados da matriz circular adequavam minhas necessidades. 12 de junho 12 às 4:38 Se suas necessidades são simples, você pode tentar usar uma média móvel exponencial. Simplificando, você faz uma variável de acumulador e, à medida que seu código examina cada amostra, o código atualiza o acumulador com o novo valor. Você escolhe um alfa constante que está entre 0 e 1 e calcula isso: você precisa apenas encontrar um valor de alfa onde o efeito de uma determinada amostra dura apenas cerca de 1000 amostras. Hmm, na verdade, não tenho certeza de que isso é adequado para você, agora que eu já coloquei aqui. O problema é que 1000 é uma janela bastante longa para uma média móvel exponencial. Não tenho certeza se houver um alfa que espalhe a média nos últimos 1000 números, sem fluxo inferior no cálculo do ponto flutuante. Mas se você quisesse uma média menor, como 30 números ou mais, esta é uma maneira muito fácil e rápida de fazê-lo. Respondeu 12 de junho 12 às 4:44 1 na sua postagem. A média móvel exponencial pode permitir que o alfa seja variável. Assim, isso permite que ele seja usado para calcular médias base de tempo (por exemplo, bytes por segundo). Se o tempo desde a última atualização do acumulador for superior a 1 segundo, você deixa alfa ser 1.0. Caso contrário, você pode deixar alpha be (usecs desde a última atualização1000000). Ndash jxh 12 de junho 12 às 6:21 Basicamente eu quero acompanhar a média móvel de um fluxo contínuo de um fluxo de números de ponto flutuante usando os 1000 números mais recentes como uma amostra de dados. Observe que as atualizações abaixo atualizam o total como elementos como adicionados, evitando a trajetória O (N) cara para calcular a soma - necessária para a média - na demanda. Total é feito um parâmetro diferente de T para suportar, e. Usando um longo tempo quando totalizando 1000 long s, um int para char s, ou um duplo para float total s. Isso é um pouco falho em que numsamples poderia ultrapassar o INTMAX - se você se importar, você poderia usar um sinal não assinado por muito tempo. Ou use um membro extra de dados do bool para gravar quando o recipiente é preenchido pela primeira vez ao andar de bicicleta numsamples em torno da matriz (melhor então renomeado algo inócuo como pos). Respondeu 12 de junho 12 às 5:19 um assume que quotvoid operator (T sample) quot é realmente quotvoid operatorltlt (T sample) quot. Ndash oPless Jun 8 14 às 11:52 oPless ahhh. Bem manchado. Na verdade, eu quis dizer que ele seria um operador vazio () (amostra T), mas é claro que você poderia usar qualquer notação que você gostasse. Vou consertar, obrigado. Ndash Tony D 8 de junho 14 às 14: 27 É possível implementar uma média móvel em C sem a necessidade de uma janela de amostras Achei que posso otimizar um pouco, escolhendo um tamanho de janela que é um poder de dois para permitir bit - Desligar em vez de dividir, mas não precisar de um buffer seria bom. Existe uma maneira de expressar um novo resultado de média móvel apenas como função do resultado antigo e da nova amostra. Definir um exemplo de média móvel, em uma janela de 4 amostras para ser: Adicionar nova amostra e: Uma média móvel pode ser implementada de forma recursiva , Mas para uma computação exata da média móvel você deve lembrar a amostra de entrada mais antiga na soma (ou seja, a no seu exemplo). Para um comprimento N média móvel você calcula: onde yn é o sinal de saída e xn é o sinal de entrada. Eq. (1) pode ser escrito de forma recursiva, então você sempre precisa se lembrar da amostra xn-N para calcular (2). Conforme demonstrado por Conrad Turner, você pode usar uma janela exponencial (infinitamente longa) em vez disso, o que permite calcular a saída apenas da saída passada e da entrada atual: mas esta não é uma média móvel padrão (não ponderada), mas exponencialmente Média móvel ponderada, onde as amostras no passado obtêm um peso menor, mas (pelo menos em teoria) você nunca esquece nada (os pesos ficam cada vez menores e menores para amostras no passado). Eu implementei uma média móvel sem memória de item individual para um programa de rastreamento GPS que eu escrevi. Eu começo com 1 amostra e divide por 1 para obter o valor médio atual. Em seguida, adicione uma amostra e divida em 2 para a média atual. Isso continua até chegar ao comprimento da média. Cada vez, adiciono na nova amostra, obtenho a média e retire essa média do total. Eu não sou matemático, mas isso pareceu uma boa maneira de fazê-lo. Eu pensei que isso tornaria o estômago de um verdadeiro matemático, mas, parece que é uma das maneiras aceitas de fazê-lo. E funciona bem. Basta lembrar que, quanto mais alto for seu comprimento, mais lento seguirá o que você deseja seguir. Isso pode não importar a maior parte do tempo, mas ao seguir os satélites, se você estiver lento, a trilha pode estar longe da posição real e parecerá ruim. Você poderia ter uma lacuna entre o Sáb e os pontos de fuga. Eu escolhi um período de 15 atualizado 6 vezes por minuto para obter um alisamento adequado e não chegar muito longe da posição real de SAT com os pontos de trilhos alisados. Respondido 16 de novembro 16 às 23:03 inicializar total 0, count0 (cada vez que vê um novo valor Então uma entrada (scanf), uma adicionar totalnewValue, um incremento (contagem), uma média de divisão (total total) Esta seria uma média móvel em relação a Todas as entradas Para calcular a média sobre apenas as últimas 4 entradas, seria necessário 4 variáveis de entrada, talvez copiando cada entrada para uma variável de entrada mais antiga, calculando a nova média móvel. Como soma das 4 variáveis de entrada, divididas por 4 (o turno direito 2 seria Bom, se todas as entradas fossem positivas para que o cálculo médio fosse respondido 3 de fevereiro 15 às 4:06 Isso realmente calculará a média total e NÃO a média móvel. À medida que a contagem aumenta, o impacto de qualquer nova amostra de entrada se torna ndash extremamente lento Hilmar Feb 3 15 às 13:53 Sua resposta 2017 Stack Exchange, Inc
No comments:
Post a Comment