Monday, 28 August 2017

Mover Média Di Spss


26 de novembro de 2009 Metode Smoothing merupakan salah satu jenis teknik yang digunakan dalam analisis série de tempo (runtun waktu) untuk memberikan peramalan jangka pendek. Dalam melakukan suavizando (penghalusan) terhadap data, nilai masa lalu digunakan untuk mendapatkan nilai yang dihaluskan untuk série de tempo. Nilai yang telah dihaluskan ini kemudian diekstrapolasikan untuk meramal nilai masa depan. Tehnik yang kita kenal dalam metode smoothing yaitu Média móvel simples do alisamento exponencial. Pada halaman ini, saya hanya akan membahas tentang Average Moving Simple. Simples dados médios em movimento série temporária seringkali mengandung ketidakteraturan yang akan menyebabkan prediksi yang beragam. Untuk menghilangkan efek yang tidak diinginkan dari ketidak-teraturan ini, metodo simples, móvel, médio, mengambil, beberapa, nilai, yang, sedang, diamati, memberikan, rataan, dan menggunakannya untuk memprediksi nilai untuk periode waktu yang akan datang. Semakin tinggi jumlah pengamatan yang dilakukan, maka pengaruh metode média móvel akan lebih baik. Meningkatkan jumlah observasi akan menghasilkan nilai peramalan yang lebih baik karena ia cenderung meminimalkan efek-efek pergerakan yang tidak biasa yang muncul pada dados. Moving average juga mempunyai dua kelemahan yaitu memerlukan dados masa lalu dalam jumlah besar untuk ketepatan prediksi, dan masing-masing observasi diberikan bobot yang sama, ini melanggar bukti empiris bahwa semakin observa terbaru seharusnya lebih dekat dengan nilai masa depan maka kepentingan bobotnya akan meningkat pula. Aplikasi Metode Moving Average software Dengan IBM SPSS 23 dapat dilihat pada contoh berikut ini: Berikut kita memiliki dados kunjungan ke Bali para Januari 2008 hingga Juni 2015 dalam format excel, dados diambil dari website Dinas Pariwisata Provinsi Bali: 1. Langkah pertama adalah memasukkan dados ke Folha de cálculo do DALAM SPSS 23 sebagai berikut: Data View. (Bagi yang belum jelas tentang cara impor dados dari excel ke SPSS 23 lihat di step bahasan in gtgtgt) 2. Kemudian pada menu SPSS 23 pilih Transformar 8211 Criar Time Series Seperti Gambar: 3. Setelah itu akan muncul kotak diálogo berikut, pilih Visita dan Klik panah sehingga variabel visita berpindah ke kolom variabel 8211 Novo Variabel di sebelah kanan. 4. Setelah itu pilih pada kotak função pilih Cented Moving Average, atau bisa juga Prior Moving Average. 5. Kemudian isikan span dengan 3, dan klik change. Span diisi dengan angka 3 artinya mengalami proses 3 kali suavizando yang biasa kita kenal juga dengan Média móvel ponderada. Adapun proses 1 dan 2 kali suavizando kita sebut Single Moving Average do Double Moving Average. Jangan lupa untuk klik change ágar variabel visit1 berubah menjadi visi3, kemudian ok. 6. Saída yang didapat dari metode Média móvel centrada 8211 Média móvel ponderada adalah sebagai berikut: Dari saída diatas, dapat diketahui bahwa Kunjungan pada bulan-bulan berikutnya dapat kita lihat dari variabel baru yang dihasilkan dari análise de séries de tempo metodo centrado média móvel - movimento ponderado média . Demikian juga jika kita memilih antes da média móvel, keduanya merupakan metode simples média móvel 3, maka hasil peramalannya akan sama. (Yoz) Aplikasi Metode Exponencial Suavização dengan SPSS akan dibahas pada halaman selanjutnya gtgtgt Publicado por ariyoso Teori amp Konsep Statistik Konsep Variabel Kualitatif Dan Kuantitatif Tipe Dados Statistik Deskriptif Konsep Parametrik dan Non Parametrik Statistika Inferensia Penyusunan Hipotesis Teknik Pengukuran Statistik Teknik Amostragem Sebaran Probabilitas Diskret Sebaran Normal Sebaran Binomial Sebaran Poisson Transformasa Dados Korelasi Bivariat Dados Pemaparan Kualitatif dengan Tabulasi Silang novo IBM SPSS Ver.23Tag: peramalan dengan SPSS Metode Smoothing merupakan salah satu jenis teknik yang digunakan dalam analisis série de tempo (runtun waktu) untuk memberikan peramalan jangka pendek. Dalam melakukan suavizando (penghalusan) terhadap data, nilai masa lalu digunakan untuk mendapatkan nilai yang dihaluskan untuk série de tempo. Nilai yang telah dihaluskan ini kemudian diekstrapolasikan untuk meramal nilai masa depan. Tehnik yang kita kenal dalam metode smoothing yaitu Média móvel simples do alisamento exponencial. Pada halaman ini, saya hanya akan membahas tentang Average Moving Simple. Simples dados médios em movimento série temporária seringkali mengandung ketidakteraturan yang akan menyebabkan prediksi yang beragam. Untuk menghilangkan efek yang tidak diinginkan dari ketidak-teraturan ini, metodo simples, móvel, médio, mengambil, beberapa, nilai, yang, sedang, diamati, memberikan, rataan, dan menggunakannya untuk memprediksi nilai untuk periode waktu yang akan datang. Semakin tinggi jumlah pengamatan yang dilakukan, maka pengaruh metode média móvel akan lebih baik. Meningkatkan jumlah observasi akan menghasilkan nilai peramalan yang lebih baik karena ia cenderung meminimalkan efek-efek pergerakan yang tidak biasa yang muncul pada dados. Moving average juga mempunyai dua kelemahan yaitu memerlukan dados masa lalu dalam jumlah besar untuk ketepatan prediksi, dan masing-masing observasi diberikan bobot yang sama, ini melanggar bukti empiris bahwa semakin observa terbaru seharusnya lebih dekat dengan nilai masa depan maka kepentingan bobotnya akan meningkat pula. Aplikasi Metode Moving Average software Dengan IBM SPSS 23 dapat dilihat pada contoh berikut ini: Berikut kita memiliki dados kunjungan ke Bali para Januari 2008 hingga Juni 2015 dalam format excel, dados diambil dari website Dinas Pariwisata Provinsi Bali: 1. Langkah pertama adalah memasukkan dados ke Folha de cálculo do DALAM SPSS 23 sebagai berikut: Data View. (Bagi yang belum jelas tentang cara import data dari excel ke SPSS 23 lihat di step bahasan ini ampgtampgtampgt) 2. Kemudian pada menu SPSS 23 pilih Transformar Criar Série Temporal Seperti Gambar: 3. Setelah itu akan muncul kotak diálogo berikut, pilih Visita dan klik Panah sehingga variabel visita berpindah ke kolom variabel Novo Variabel di sebelah kanan. 4. Setelah itu pilih pada kotak função pilih Cented Moving Average, atau bisa juga Prior Moving Average. 5. Kemudian isikan span dengan 3, dan klik change. Span diisi dengan angka 3 artinya mengalami proses 3 kali suavizando yang biasa kita kenal juga dengan Média móvel ponderada. Adapun proses 1 dan 2 kali suavizando kita sebut Single Moving Average do Double Moving Average. Jangan lupa untuk klik change ágar variabel visit1 berubah menjadi visi3, kemudian ok. 6. Saída yang didapat dari metode Centrada na média móvel Média média ponderada adalah sebagai berikut: Dari output diatas, dapat diketahui bahwa Kunjungan pada bulan-bulan berikutnya dapat kita lihat dari variabel baru yang dihasilkan dari análise de séries de tempo metodo centrado média móvel 8211 média móvel ponderada . Demikian juga jika kita memilih antes da média móvel, keduanya merupakan metode simples média móvel 3, maka hasil peramalannya akan sama. (Yoz) Aplikasi Metode Exponential Suavização dengan SPSS akan dibahas pada bahasan selanjutnyaSPSS Mínimo nó personalizado móvel para o SPSS Modeler para calcular o simples Média móvel nos últimos n períodos (média não ponderada dos dados n anteriores) Para criar uma média móvel: selecione qualquer campo contínuo no seletor de valores no qual você deseja calcular a média móvel Na média de movimentação de campo ao longo dos períodos, selecione um período durante o qual A média móvel deve ser calculada. O resultado é um campo que contém a média dos últimos n períodos para cada linha. O resultado é uma nova coluna ma que é preenchida com nulo os primeiros n-1 períodos e, em seguida, com a média nos últimos n períodos: atualizações futuras podem conter diferentes médias móveis, bem como a possibilidade de derivar vários períodos. Sinta-se à vontade para contribuir. Você não pode executar essa ação neste momento. Você fez login com outra guia ou janela. Recarregue para atualizar sua sessão. Você se separou em outra guia ou janela. Recarregue para atualizar sua sessão.

No comments:

Post a Comment